08/09/2021

Маленький взлом системы (1): наконец-то вы сможете изменять строки типа char* String

Вряд ли найдутся люди, готовые поспорить с тем, что невозможно сосчитать как часто нам хочется изменить содержание строки объявленной как

char* String = "Hello, World!";

Несмотря на то, что эта операция выглядит абсолютно логично и мы ожидаем от неё весьма конкретного и несложного результата, пытаясь сделать что-то вроде

String[1] = 'a';

мы получаем ошибку сегментации (Segmentation fault и сигнал SIGSEGV). И, как правило, на этом вся разработка заканчивается.

Ни в коем случае не пытайтесь это сделать — ваш процессор немедленно сгорит и все несохранённые данные будут потеряны!

Ошибка сегментации возникает в случае, когда процесс «лезет» в недоступную ему область памяти с целью записи (или чтения, см. ниже). А что это за область памяти такая, в которую мы не можем писать? В нашем примере, это область в сегменте данных, помеченная как память только для чтения — RO DATA. Посмотрим что получается в коде программы, в которой объявлена строка char* String. Из программы типа:

int main ()
{
  char* lString = "Hello, World!";
}

мы получим:

    .section   .rodata
.LC0:
    .string "Hello, World!"

Конечно, можно просто заменить .section .rodata на .section .data, но каждый раз вмешиваться в сборку проекта на не самом удобном этапе — трансляции, мы предлагать не будем.

Я решил рассмотреть функцию POSIX — mprotect(). Функция изменяет условия доступа к области памяти.

Но с этой функцией связана одна ошибка. В документации — как в man, так и в интернете, указано, что mprotect() помечает память начиная от адреса страницы до адреса страницы + длинна в байтах за вычетом единицы. В интернете я случайно нашёл упоминание, что длинна здесь указывается в количестве страниц. Что логично, так как MMU работает со страницами, а не с байтами. На нашем примере я подтвердил это — указывая в качестве длинны единицу я пометил достаточное количество памяти для всех наших переменных, то есть, видимо, mprotect() действительно берёт длину в количестве страниц.

Принимает функция на вход адрес, длину и флаг. В нашем примере нас будет интересовать, флаг и, как ни странно, адрес. Флаг нам нужен PROT_WRITE. А с адресом всё чуть более интересно. Так как MMU работает со страницами, начальный адрес, должен быть кратным размеру страницы. С тем, чтобы получить нужный нам адрес, мы вычислим ближайшую (в меньшую сторону) к интересующей нас переменной границу страницы памяти. Сделаем это мы следующим образом. Запросим размер страницы, сбросим у адреса переменной все правые биты, совпадающие с размером страницы. Проще говоря — обнулим адрес переменной справа на величину размера страницы.

Например: адрес lString равен 555555556004h, размер страницы получаем от системы, в моём случае он оказался равен 4096. Из размера страницы уберём единицу, так как фактически она адресуется с 0 по 4095, получим FFFh. Видно, что страницы с таким размером кратны трём полубайтам или полутора байтам. В нашем примере адрес ближайшей к переменной странице равен 555555556000h. Чтобы вычислить этот, адрес нужно сбросить крайние полтора байта адреса переменной. Инвертировав размер страницы получаем маску для логической операции FFFFFFFFFFFFF000h. Приведём это к типу void*, что даст нам полный размер адреса в памяти для любой архитектуры. В результате получим следующие результаты подготовки:

void* lPageBoundary = (void*) ((long) lStr1 & ~(getpagesize () - 1));
Длину, для нашего эксперимента мы поставим равной одной странице. Размер страницы позволит нам поиграть не только с записью в запретные места, но и с границами переменных.
mprotect (lPageBoundary, 1, PROT_WRITE);

Всё. С этого момента начинаются невиданные до сих пор чудеса. Например, следующая программа выводит «World!», а не столь неприятный и уже надоевший «Segmentation fault»:

#include "string.h"
#include "unistd.h"
#include "stdio.h"
#include "sys/mman.h"

int main ()
{
  char *lStr1 = "Hello";
  char *lStr2 = " orld!";
  void* lPageBoundary = (void*) ((long) lStr1 & ~(getpagesize () - 1));

  // Comment next line to turn magic off:
  mprotect (lPageBoundary, 1, PROT_WRITE);
  lStr2[0] = 'W';
  printf ("%s\n", lStr2);
}

Но я предлагаю пройти дальше и ещё чуть-чуть поиграть с адресами. Как вы можете видеть, я объявил две переменные — lStr1 и lStr2. char* — это переменная типа asciz или LPSZ (Long Pointer to Zero Terminated String) или, по-русски — строка оконченная нулём. Как известно, функции, работающие со строками, определяют их длину и окончание по этому самому нулю. Давайте проверим, что будет, если вместо оконечного нуля lStr1 поставить пробел и вывести эту строку при помощи printf(). Здесь же продемонстрируем что мы можем писать (изменять память) в пределах всей памяти модифицированной функцией mprotect(). Эксперимент с удалением последнего нуля из строки lStr1 я предлагаю реализовать путём записи по адресу строки lStr2 - 1:

lStr2[-1] = ' ';
printf ("%s\n", lStr1);

Так как строки расположены в памяти непосредственно одна за второй, получается, что я удалил завершающий нуль lStr1 и поставил не его место пробел. Соответственно, строка lStr1 перестала быть asciz и по логике, printf() должен «провалиться» дальше. Проверим это, получим вывод:

Hello World!

Всё верно, printf() прошёл до первого завершающего нуля, а им оказался завершающий нуль строки lStr2. Мы получили вывод «совмещённой» строки.

На самом деле это выглядит непривычно только на C. На ассемблере подобная работа с данными является повседневной нормой — например длинна строки (string или ascii/asciz) или массива может быть вычислена вычитанием адреса следующей за ней переменной из её собственного адреса.

Но и это ещё не всё. Возможно, к этому моменту, у вас в голове возникла мысль — «Если можно так, то, может, я смогу изменять значения переменных, объявленных как const»? Ответ положителен — эту давнюю мечту можно реализовать. Но с небольшим нюансом. Как мы знаем, компилятор нам не позволит писать в переменные, объявленные с модификатором const. Попытка сделать:

const char* lStr3 = "hello world!";
lStr3[0] = 'H';

приведёт к:

./mprotect.c:18:12: error: assignment of read-only location '*lStr3'
   lStr3[0] = 'H';
            ^

Для разрешения этой ситуации обманем компилятор следующим образом:

*((char*)lStr3 + 0) = 'H';

Мы взяли адрес от переменной, добавили к нему смещение и по нему прописали, что хотели. Теперь всё собирается и работает. За смещение здесь взят нуль, это не имеет технического смысла. Я написал здесь смещение для того чтобы в полной мере раскрыть форму записи доступа к переменным объявленным как const. По этой форме записи вы можете адресоваться на любой символ строки... и не только на него, и не только вперёд, так как мы «взяли» себе целую страницу.

NB
Вроде и очевидно, но считаю что я должен предупредить. Мы сняли запрет записи на область памяти, возможно вы снимете запрет на большую область памяти. Это значит, что вы можете модифицировать память без какого либо вообще контроля со стороны ОС, MMU и компилятора, так как мы полностью исключили этот функционал. Вы можете писать в эти области памяти, но, если вы хотите сохранить адекватную работоспособность своего кода, вам нужно ещё более тщательно следить за границами областей памяти изменяемых вами!

P.S
Возможно вы заметили, что мы использовали флаг доступа PROT_WRITE, без PROT_READ и, при этом мы читали данные из этих областей. Всё это было так потому что у MMU x86 (а я все эксперименты, за исключением особых пометок, провожу на x86-ой машине) нет режима чтения без записи, поэтому можно поставить PROT_WRITE | PROT_READ, но смысла в этом нет. Если вы хотите поиграть с доступом, вы можете попробовать PROT_NONE. В этом случае вы не будете иметь никакого доступа к странице памяти и даже попытка чтения, например через printf(), приведёт к ошибке сегментации. Эту особенность можно было бы использовать каким-то образом на практике, но это затруднено тем, что мы можем помечать только целую страницу, а они бывают только 4Kb/2Mb/4Mb и 4Gb размером, в зависимости от архитектуры и/или режима работы. 4Kb — довольно много для использования механизмов доступа к памяти в качестве какой-нибудь «ловушки». Хотя, если программа достаточно большая, можно группировать флаги, на изменение которых в какие-то моменты мы хотим реагировать, в блоки по 4Kb и в обработчике сигнала реализовать логику реакции на сработавшее исключение защиты.

No comments:

Post a Comment